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Abstract

In this paper we are concerned with the estimation of temperature-dependent thermal conductivity of a one-dimensional inverse heat
conduction problem. First, we construct a one-step group-preserving scheme (GPS) for the semi-discretization of quasilinear heat con-
duction equation, and then derive a quasilinear algebraic equation to determine the unknown thermal conductivity under a given initial
temperature and a measured temperature perturbed by noise at time T. The new method does not require any prior information on the
functional form of thermal conductivity. Several examples are examined to show that the new approach has high accuracy and efficiency,
and the number of iterations spent in solving the quasilinear algebraic equation is smaller than five even in a large temperature range.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For heat conduction problems, a case of practical engi-
neering interest is that in which the thermal conductivity
property depends on the temperature itself. Many theoret-
ical and experimental methods were developed to measure
the thermophysical properties of materials. On the other
hand, a number of numerical methods have been used to
integrate the resulting quasilinear parabolic equations
when thermal conductivity is dependent on temperature,
some applicable to any type of temperature-dependent
thermal conductivity, and others restricted to particular
types, e.g., exponential or linear dependence. In other
cases, algebraic solutions have been expressed in terms of
a single integral, for example, the Boltzmann transforma-
tion and the Kirchhoff transformation.

Roughly speaking, the direct heat conduction problems
are already a mature subject, which is concerned with the
determination of temperature at the interior points of a
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body when initial and boundary conditions, thermophysi-
cal properties and heat generation are specified. Con-
versely, the inverse heat conduction problems, which
involve the determination of initial condition, the surface
temperature or heat flux conditions, energy generation or
thermophysical properties from the temperature measure-
ments taken at a finite number of points within the body,
are still in a silent progress required more study to clarify
the behaviors and properties of inverse problems no matter
from analytical or numerical aspect.

The determination of temperature-dependent thermal
conductivity from a measured temperature profile is one
of the inverse heat conduction problems. It is more difficult
than that of the determination of the thermal conductivity
of temporal-dependent type or spatial-dependent type. In
order to calculate this inverse problem, there appears much
advance in this issue, including boundary element method
[1], finite element method [2], the Laplace transformation
method [3], the conjugate gradient method [4–6], the
least-square method [7], the linear inverse method [8–10],
the Davidon–Fletcher–Powell method [11], the Kirchhoff
and other transformation methods [12–14].
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Nomenclature

A augmented matrix
a, b coefficients defined in Eq. (26)
a‘, b‘ coefficients defined in Eq. (15)
ai, i = 1, . . . , 5 coefficients used in Eq. (29)
ai, i = 1, . . . , 8 coefficients used in Eq. (43)
D a domain in Rn � R

En n-dimensional Euclidean space
f n-dimensional vector field
f‘ numerical value of f at the ‘th time step
g n + 1-dimensional Minkowski metric
G an element of Lorentz group
Gi, i = 1, . . . ,K elements of Lorentz group
G0

0 the 00th component of G

In n-dimensional unit matrix
k(u) temperature-dependent thermal conductivity
k̂ðuÞ an estimation of k(u)
ki :¼k(ui)
L Lipschitz constant
k•k Euclidean norm
Mnþ1 n + 1-dimensional Minkowski space
n number of interior grid points
R the set of real numbers
Rn n-dimensional real space
R(i) random numbers
s noise level
SO0(n, 1) n + 1-dimensional Lorentz group
so(n, 1) the Lie algebra of SO0(n, 1)
t time
t‘ discretized time of ‘th step
Dt time increment

T total time
u temperature distribution
uR a temperature interval
ui numerical value of u at the ith grid point
u0 fixed temperature at left boundary
u0(x) initial temperature distribution
uT(x) temperature distribution at time T

u0
i the value of u0(x) at the ith grid point

uT
i the value of uT(x) at the ith grid point

u n-dimensional vector
u‘ numerical value of u at the ‘th time step
v :¼u(x, t) � x

x space variable
Dx lattice spacing length of x

X n + 1-dimensional augmented vector
X‘ numerical value of X at the ‘th time step
X0 the value of X at the initial time
XT the numerical value of X at time T

Greek symbols

e stopping criterion
g adaptive factor used in one-step GPS
g‘ adaptive factor at the ‘th time step
r boundary noise level

Subscripts and superscripts
i, j indices
K index
t transpose
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In this paper we would develop a one-step group-pre-
serving scheme and a quasilinear algebraic equation for
the inverse problem of estimating the temperature-depen-
dent thermal conductivity. The new method is very differ-
ent from the above methods. It is an extension of the
work by Liu [15,16].

Our proposed scheme is based on the numerical method
of line which is a well-developed numerical method that
transforms partial differential equations into a system of
ordinary differential equations (ODEs). The major contri-
butions of this paper are applying the group-preserving
property of the resultant system in the development of a
one-step numerical scheme and giving a conviction that
the proposed scheme is workable to the inverse problems.
Specifically, the proposed scheme is efficient and time sav-
ing. Through this study, we may have an easy-implementa-
tion and explicit one-step group-preserving scheme (GPS)
used in the estimation of temperature-dependent thermal
conductivity, the accuracy and efficiency of which are
rather better.
2. Group-preserving scheme

2.1. A Lie algebra formulation

Group-preserving scheme (GPS) can preserve the inter-
nal symmetry group of the considered system. Although we
do not know previously the symmetry group of non-linear
differential equations systems, Liu [15] has embedded them
into the augmented dynamical systems, which deal with the
evolution not only of state variables but also the magnitude
of the state variables vector. That is, for an n ordinary dif-
ferential equations system:

_u ¼ fðu; tÞ; u 2 Rn; t 2 R; ð1Þ

we can embed it into the following n + 1-dimensional aug-
mented dynamical system:

d

dt

u

kuk

� �
¼

0n�n
fðu;tÞ
kuk

ftðu;tÞ
kuk 0

2
4

3
5 u

kuk

� �
. ð2Þ
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Here we assume kuk > 0 and hence the above system is
well-defined.

It is obvious that the first row in Eq. (2) is the same as
the original Eq. (1), but the inclusion of the second row
in Eq. (2) gives us a Minkowskian structure of the aug-
mented state variables of X :¼ (ut,kuk)t satisfying the cone
condition:

XtgX ¼ 0; ð3Þ
where

g ¼
In 0n�1

01�n �1

� �
ð4Þ

is a Minkowski metric, In is the identity matrix of order n,
and the superscript t stands for the transpose. In terms of
(u,kuk), Eq. (3) becomes

XtgX ¼ u � u� kuk2 ¼ kuk2 � kuk2 ¼ 0; ð5Þ
where the dot between two n-dimensional vectors denotes
their scalar product. The cone condition is thus a natural
constraint that we can impose on the dynamical system (2).

Consequently, we have an n + 1-dimensional augmented
system:

_X ¼ AX ð6Þ
with a constraint (3), where

A :¼
0n�n

fðu;tÞ
kuk

ftðu;tÞ
kuk 0

2
4

3
5; ð7Þ

satisfying

Atgþ gA ¼ 0 ð8Þ
is a Lie algebra so(n, 1) of the proper orthochronous Lor-
entz group SO0(n, 1). This fact prompts us to devise the
so-called group-preserving scheme, whose discretized map-
ping G exactly preserves the following properties:

GtgG ¼ g; ð9Þ

det G ¼ 1; ð10Þ

G0
0 > 0; ð11Þ

where G0
0 is the 00th component of G. It is a proper ortho-

chronous Lorentz group denoted by SO0 (n, 1). The term
orthochronous used in the special relativity theory is re-
ferred to the preservation of time orientation. Here it
should be understood as the preservation of the sign of kuk.

Remarkably, the original n-dimensional dynamical sys-
tem (1) in En can be embedded naturally into an augmented
n + 1-dimensional dynamical system (6) in Mnþ1. That two
systems are mathematically equivalent. Although the
dimension of the new system is raising one more, it has
been shown that under the Lipschitz condition of

kfðu; tÞ � fðy; tÞk 6Lku� yk 8ðu; tÞ; ðy; tÞ 2 D; ð12Þ

where D is a domain of Rn � R and L is known as a
Lipschitz constant, the new system has the advantage of
allowing us to develop the group-preserving numerical
scheme [15]:

X‘þ1 ¼ Gð‘ÞX‘; ð13Þ
where X‘ denotes the numerical value of X at the discrete
time t‘, and G(‘) 2 SO0(n, 1) is the group value at time t‘.

2.2. GPS for differential equations system

The Lie group generated from A 2 so(n, 1) is known as a
proper orthochronous Lorentz group. An exponential
mapping of A(‘) admits the closed-form representation:

exp½DtAð‘Þ� ¼
In þ ða‘�1Þ

kf‘k2 f‘f
t
‘

b‘f‘
kf‘k

b‘f
t
‘

kf‘k a‘

2
4

3
5; ð14Þ

where

a‘ :¼ cosh
Dtkf‘k
ku‘k

� �
; b‘ :¼ sinh

Dtkf‘k
ku‘k

� �
. ð15Þ

Substituting the above exp[DtA(‘)] for G(‘) into Eq. (13)
and taking its first row, we obtain

u‘þ1 ¼ u‘ þ g‘f‘ ¼ u‘ þ
ða‘ � 1Þf‘ � u‘ þ b‘ku‘kkf‘k

kf‘k2
f‘. ð16Þ

From f‘ Æ u‘ P �kf‘kku‘k we can prove that the adaptive
factor g‘ satisfying

g‘ P
ku‘k
kf‘k

1� exp �Dtkf‘k
ku‘k

� �� �
> 0 8Dt > 0. ð17Þ

This scheme is group properties preserved for all Dt > 0.
The theory of Lie-group and Lie-algebra has been devel-

oped for a long time. However, the Lie-group methods to
be employed on the numerical methods are only developed
very recently as shown by Liu [15]. The GPS method is very
effective to deal with ODEs with special structures as
shown by Liu [17] for stiff equations and by Liu [18] for
ODEs with constraints.

3. Solving the heat conduction problems by one-step GPS

3.1. Semi-discretization

The numerical method of line is simple in concept that
for a given system of partial differential equations discret-
izes all but one of the independent variables. The semi-
discrete procedure yields a coupled system of ordinary
differential equations which are then numerically
integrated.

Let us consider a heat conducting slab composed of tem-
perature-dependent material with a thermal conductivity
function k(u):

ou
ot
¼ o

ox
kðuÞ ou

ox

� �
; ð18Þ



Table 1
The comparison of numerical solutions with exact solutions for Example 1

Time
(s)

Galerkin
(N = 2)

Galerkin
(N = 3)

GPS One-step
GPS

Exact

0.02 1.32611 1.32020 1.32083 1.32087 1.32087
0.04 1.18389 1.17278 1.17373 1.17383 1.17383
0.06 1.06757 1.05188 1.05296 1.05312 1.05312
0.08 0.97242 0.95274 0.95382 0.95405 0.95404
0.10 0.89461 0.87144 0.87243 0.87272 0.87271
0.12 0.83096 0.80477 0.80563 0.80595 0.80594
0.14 0.77890 0.75009 0.75080 0.75115 0.75114
0.16 0.73632 0.70526 0.70580 0.70616 0.70615
0.18 0.70150 0.66849 0.66886 0.66923 0.66922
0.20 0.67301 0.63833 0.63856 0.63892 0.63891
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and write

o

ox
kðuÞ ou

ox

� �
¼ k0ðuÞ ou

ox

� �2

þ kðuÞ o
2u

ox2
. ð19Þ

Then, Eq. (18) becomes a quasilinear heat conduction
equation:

ou
ot
¼ k0ðuÞ ou

ox

� �2

þ kðuÞ o
2u

ox2
. ð20Þ

We adopt the numerical method of line to discretize the
spatial coordinate x by considering the following finite
difference:

o

ox
kðuÞ ou

ox

� �����
x¼iDx

¼ kðuiþ1Þ � kðuiÞ
uiþ1 � ui

uiþ1 � ui

Dx

h i2

þ kðuiÞ
ðDxÞ2

½uiþ1 � 2ui þ ui�1�; ð21Þ

and then Eq. (20) becomes n-coupled non-linear ODEs:

_uiðtÞ ¼
1

ðDxÞ2
fkiþ1½uiþ1ðtÞ � uiðtÞ� � ki½uiðtÞ � ui�1ðtÞ�g

ð22Þ
with coefficients ki = k(ui), i = 1, . . . ,n. Here, Dx is a uni-
form discretization spacing length, and ui(t) = u(iDx, t).

The next step is to advance the solution from the initial
condition to the desired time T. Really, Eq. (22) has totally
n coupled non-linear differential equations for the n vari-
ables ui(t), i = 1,2, . . . ,n, which can be numerically inte-
grated to obtain the solutions.

3.2. One-step GPS

Applying scheme (16) to Eq. (22) we can compute the
heat conduction equation by GPS. Assume that the total
time T is divided into K steps, that is, the time stepsize
we use in the GPS is Dt = T/K.

Starting from an initial augmented condition X0 = X(0)
we want to calculate the value X(T) at the desired time
t = T. By Eq. (13) we can obtain

XT ¼ GKðDtÞ � � �G1ðDtÞX0; ð23Þ
where XT approximates the real X(T) within a certain accu-
racy depending on Dt. However, let us recall that each Gi,
i = 1, . . . ,K, is an element of the Lie group SO0(n, 1), and
by the closure property of Lie group GK(Dt)� � �G1(Dt) is
also a Lie group denoted by G(T).

Hence, we have

XT ¼ GðKDtÞX0 ¼ GðT ÞX0. ð24Þ
This is a one-step transformation from X0 to XT.

One feasible method to calculate G(T) is given by

GðT Þ ¼ exp½T Að0Þ� ¼
In þ ða�1Þ

kf0k2 f0f t
0

bf0

kf0k

bft
0

kf0k
a

2
4

3
5; ð25Þ
where

a :¼ cosh
Tkf0k
ku0k

� �
; b :¼ sinh

T kf0k
ku0k

� �
. ð26Þ

Then from Eq. (16) we obtain a one-step GPS:

uT ¼ u0 þ gf0; ð27Þ

g ¼ ða� 1Þf0 � u0 þ bku0kkf0k
kf0k2

. ð28Þ

The accuracy and efficiency are demonstrated by numerical
examples given below.

3.3. Test the accuracy of one-step GPS

In this section we are going to test the accuracy of one-
step GPS through two numerical examples. The first exam-
ple with k(u) = 1 has a closed-form solution, and for the
second example with [6,9]

kðuÞ ¼ a1 þ a2 exp
u
a3

� �
þ a4 sin

u
a5

� �
; ð29Þ

there has no closed-form solution available.

3.3.1. Example 1

In order to test our numerical results by the one-step
GPS, let us consider the one-dimensional heat conduction
equation

ut ¼ uxx; 0 < x < 1; 0 < t < T ð30Þ
with the boundary conditions

uð0; tÞ ¼ 0; uð1; tÞ ¼ 1;

and the initial condition

uðx; 0Þ ¼ sin pxþ x.

The exact solution is given by

uðx; tÞ ¼ e�p2t sin pxþ x. ð31Þ
The numerical solution by GPS was summarized in

Table 1 to show the numerical values at point x = 0.5 for
different times, where n = 20 and Dt = 0.001 s were used
in our calculation. In the same table the Galerkin solutions
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given by Fletcher [19] with N = 2,3 orders are also included
to compare with exact solution (31) as well as with GPS
solutions. It can be seen that the GPS solutions are more
accurate than that of the Galerkin solutions. Our scheme
is more easy to implement than that of the Galerkin
method, which requires to do a lot of integrals before
obtaining the N ordinary differential equations for the N

variable coefficients.
In order to apply the one-step GPS to this problem, let

us by a variable transformation v(x, t) = u(x, t) � x write
Eq. (30) to

vt ¼ vxx; 0 < x < 1; 0 < t < T ð32Þ
with the boundary conditions

vð0; tÞ ¼ 0; vð1; tÞ ¼ 0;

and the initial condition

vðx; 0Þ ¼ sin px.

We apply the one-step GPS for this problem by solving
v(x, t), and then u(x, t) = v(x, t) + x. In Table 1 we compare
the numerical solutions of the one-step GPS at point
x = 0.5 for different times with the exact solutions. In the
calculations by the one-step GPS we fix Dx = 1/200 and
let the time stepsizes equal to the times which we carry
out the comparison. Very surprisingly, the numerical one-
step GPS solutions are very good and almost equal to
the exact solutions. If we increase the grid numbers the
one-step GPS may produce the same exact solutions.

When T = 0.4 s, we compare three computations in
Fig. 1(a) by the one-step Euler method, the one-step
fourth-order Runge–Kutta method (RK4) and one-step
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,x

)

0.0 0.2 0.4 0.6 0.8 1.0
x(b)

Exact

One-step GPS

One-step Euler method

One-step Euler method

One-step GPS

One-step RK4

One-step RK4

40000 steps RK4 

Fig. 1. Comparing numerical solutions of one-step GPS, RK4 and Euler
methods for Example 1 in (a), and the numerical errors were compared in
(b).
GPS, where Dx = 1/100 and Dt = 0.4 s were fixed. It can
be seen that while the one-step GPS results in very accurate
solution, the one-step Euler method and the one-step RK4
method both gave invalid solutions. In order to get a solu-
tion as accurate as that by the one-step GPS, the RK4
method requires 40000 steps, i.e., Dt = 0.00001 s as shown
in Fig. 1(b) for the comparison of numerical errors.

3.3.2. Example 2: direct problem

Let us consider Eq. (18) with the thermal conductivity
given by Eq. (29), and with the following initial and bound-
ary conditions:

uðx; 0Þ ¼ sin px; uð0; tÞ ¼ uð1; tÞ ¼ 0. ð33Þ
In the calculations we will fix a1 = 1, a2 = 4.5, a3 = 80,
a4 = 2.5 and a5 = 5.

Before embarking the calculation of inverse problem, let
us apply the one-step GPS on this quasilinear heat conduc-
tion problem. Since for this example we are lack of a
closed-form solution we use a very fine time stepsize of
the RK4 to calculate the ‘‘exact’’ solution. In Fig. 2 the
numerical results at times T = 0.004 s and T = 0.01 s calcu-
lated respectively by the RK4 and one-step GPS were com-
pared. We have fixed Dx = 1/50 and Dt = 0.00001 s for
RK4 and Dt = T = 0.004 s and Dt = T = 0.01 s for one-
step GPS. It can be seen that for this non-linear heat con-
ducting problem the one-step GPS is effective. In the same
figure we are also plotted the numerical results obtained by
the one-step Euler method. Unlike the one-step GPS, the
one-step Euler method gave solutions with large errors.
Furthermore, we find that the one-step RK4 cannot be
applied to this calculation.
0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

u

One-step Euler method

T=0.01 sec

T=0.01 sec

T=0.004 sec

RK4

One-step GPS

One-step Euler method

Fig. 2. Comparing numerical solutions of one-step GPS and Euler
methods for Example 2 with ‘‘exact’’ solutions calculated by RK4.
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4. Identifying the temperature-dependent thermal

conductivity

4.1. u is an independent variable in the estimation of k(u)

In order to identify the thermal conductivity function
k(u) in Eq. (18), let us impose the following conditions:

uð0; tÞ ¼ u0; uð1; tÞ ¼ 0; ð34Þ
uðx; 0Þ ¼ u0ðxÞ ¼ u0ð1� xÞ; uðx; T Þ ¼ uTðxÞ; ð35Þ

where u0 is a fixed temperature at the left-end of the slab,
and u0(x) and uT(x) are two temperature distributions of
the slab measured at two different times t = 0 and t = T.

Given u(x, t), Eq. (20) can be viewed as the first-order
differential equation for k(u) with u as an independent var-
iable. For u plays a role of the independent variable in the
estimation of k(u) we suppose that it is a monotonic func-
tion of x, which can be achieved by specifying a suitable u0

and a small t, since u(x, 0) is a monotonically decreasing
function of x in the interval of x 2 [0,1] as shown in Eq.
(35). On the other hand, we suppose that the initial condi-
tion of k(u) denoted by k(0) can be known through a pre-
cise measurement at the right end of the slab where u = 0 is
fixed. However, we will consider a possible noise distur-
bance on the measurement of k(0), which will be called
the boundary noise below.

4.2. One-step GPS quasilinear equation

When apply the one-step GPS as shown by Eq. (27) to
integrate Eq. (22) from time t = 0 to time t = T we obtain
a quasilinear equation for ki:

uT
i ¼ u0

i þ
g

ðDxÞ2
fkiþ1½u0

iþ1 � u0
i � � ki½u0

i � u0
i�1�g; ð36Þ

where uT
i and u0

i are two measured temperatures at the ith
grid point when t = T and t = 0. However, g in the above is
not a constant but a non-linear function of ki as defined by
Eq. (28) with

u0 :¼ ½u0
1; . . . ; u0

n�
t
; ð37Þ

f0 :¼ 1

ðDxÞ2
½k2ðu0

2 � u0
1Þ � k1ðu0

1 � u0
0Þ; . . . ; knþ1ðu0

nþ1 � u0
nÞ

� knðu0
n � u0

n�1Þ�
t. ð38Þ

It is not difficult to rewrite Eq. (36) as

ki ¼
u0

iþ1 � u0
i

u0
i � u0

i�1

kiþ1 �
ðDxÞ2ðuT

i � u0
i Þ

gðu0
i � u0

i�1Þ
. ð39Þ

In order to utilize the above equation to solve ki, let us
guess an initial ki, and g can be determined before the
use of Eq. (39).

Therefore, if we start from a given kn+1 = k(0) we can
proceed to find kn, . . . ,k1 sequentially by the above equa-
tion. Substituting the new ki into g again we can use Eq.
(39) to generate another ki until the values of ki converge
according to a specified stopping criterion:

Xn

i¼1

jkjþ1
i � kj

i j
2
6 �; ð40Þ

which means that the L2-norm of the difference between the
j + 1th and the jth iterations of ki is smaller than the given
criterion �.

4.3. Example 2: inverse problem

In Section 3.3.2 we have calculated the Example 2 with
different numerical methods by viewing it as a direct prob-
lem. Let us return to this example again, and apply the
above estimation method to this example by viewing it as
an inverse problem.

Through the above discussion we have the idea to apply
the one-step GPS method to estimate the temperature-
dependent thermal conductivity. For this example the exact
k(u) is given by Eq. (29).

In the identification of k(u) we have fixed the initial and
boundary conditions to be

uðx; 0Þ ¼ u0ðxÞ ¼ u0ð1� xÞ ¼ 30ð1� xÞ;

uð0; tÞ ¼ u0 ¼ 30; uð1; tÞ ¼ 0. ð41Þ

The data u(xi,T) is thus calculated by the one-step GPS
under the above conditions, where Dx = 1/200 and T =
0.0001 s were used.

The data required in the estimation of ki, i = 1, . . . ,n, by
Eq. (39) are now available through u0

i ¼ 30ð1� xiÞ and
uT

i ¼ uðxi; T Þ, where xi = iDx is the coordinate of the ith
grid point.

Let us suppose an initial ki = 0, i = 1, . . . ,n. Applying
Eq. (39) after three iterations, the numerical solutions of
ki converge to the exact values according to the criterion
(40) with � = 10�15 as shown in Fig. 3(a), and the results
are better with a maximum error of 0.0167606 as shown
in Fig. 3(b) with the curve marked by s = 0.

In the case when the final measured data are contami-
nated by random noise, we are concerned with the stability
of the one-step GPS estimation method, which is investi-
gated by adding different levels of random noise on the
final data, i.e., uT

i þ sRðiÞ, where R(i) are random numbers
in [�1,1] generated from the function RANDOM_NUM-
BER given in Fortran. The numerical results with noise
were compared with the numerical result without consider-
ing random noise in Fig. 3, where T = 0.0005 s was used
for both noisy cases. It can be seen that the noise levels
with s = 0.001 and 0.002 perturb the numerical solutions
deviating from the exact solution small. It appears that
large measurement error makes the estimated result away
from the exact solution.

In Fig. 4 we plot the variation of maximum errors in the
estimation of k(u) with respect to different final times of T

taken in the one-step GPS method in the range of
[0.00001, 0.003], but fixed the grid length Dx = 1/200. There
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Fig. 4. In the estimation of k(u) for Example 2 we plot the maximum
errors and iteration numbers with different T.
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appears a linear curve, which indicates that the maximum
error is increasing when T increases. This is due to the fact
that when T is larger the one-step GPS is less accurate.
However, even up to T = 0.003 s the maximum error is also
small in the order of 0.282073.
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In terms of the relative error:R
uR
jkðuÞ � k̂ðuÞjduR

uR
kðuÞdu

� 100% ð42Þ

as defined by Yang [9], where k(u) and k̂ðuÞ denote the
exact and estimated values of thermal conductivity, and
uR = [0, 30] is the temperature interval, our estimation has
a maximum relative error in the order of 0.0533. When
T 6 2 · 10�4 the one-step GPS requires three interactions
and in the other range it requires four iterations. They
show that the speed of convergence is very fast.

Next, we investigate the influence of grid numbers on
the maximum error. In Fig. 5 we plot the variation of max-
imum errors in the estimation of k(u) with respect to differ-
ent grid numbers taken in the one-step GPS method in the
range of [20,300], but fixed the final time T = 0.00001 s.
The maximum error increases when the grid number
increases. Since T = 0.00001 s is very small, in all calcula-
tions they require only three iterations, and the maximum
errors are smaller than 0.002804.

In the above we are assumed that the initial value k(0) is
exactly known. However, since it is a quantity obtained
through the measurement carried out at the right boundary
of the slab, the inherent measurement error and noise may
be exhibited.
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In the case when the data k(0) is contaminated by a ran-
dom boundary noise, we investigate the stability of our
estimation method by adding a random noise into k(0).
We use k(0) + rR(i) to replace k(0) as an initial value on
the calculation of k(u). Therefore, if we start from kn+1 =
k(0) + rR(i) we can proceed to find kn, . . . ,k1 sequentially
by Eq. (39) until they converge according to the criterion
(40).

The numerical results with a fixed noise s = 0.001 on the
final data and the boundary noises r = 0.1 and 0.5 were
compared with the exact solution in Fig. 6. The other
parameters used are the same as that used in Fig. 3. It
can be seen that the noise levels with r = 0.1 and 0.5 dis-
turb the numerical solutions deviating from the exact solu-
tion small as shown in Fig. 6(a). By using the relative error
defined by Eq. (42), we also plot the numerical errors in
Fig. 6(b), which appears that the relative errors can be con-
trolled smaller than 3.8% even the boundary disturbance is
large up to 9.11%.

4.4. Example 3

Then, let us consider Eq. (18) with the following thermal
conductivity [9]:
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kðuÞ ¼ a1 þ a2

u
a8

� �
þ a3

u
a8

� �2

þ a4

u
a8

� �3

þ a5
u
a8

� �4

þ a6
u
a8

� �5

þ a7
u
a8

� �6

ð43Þ

with a1 = a2 = a3 = a4 = a5 = a6 = a7 = 1 and a8 = 50.
In this identification of k(u) we have fixed the initial and

boundary conditions

uðx; 0Þ ¼ u0ð1� xÞ ¼ 30ð1� xÞ; uð0; tÞ ¼ u0 ¼ 30;

uð1; tÞ ¼ 0; ð44Þ

and Dx = 1/20 and T = 0.002 s.
Applying Eq. (39) after four iterations, the numerical

solutions of ki converge to the exact values according to
the criterion (40) with � = 10�15 as shown in Fig. 7(a),
and the results are very good with a maximum error of
0.015533 and the relative error of 0.003066 as shown in
Fig. 7(b).

Even adding the noise levels with s = 0.001 and 0.002,
they disturb the numerical solutions deviating from the
exact solution very small, with a maximum error of
0.022634 and the relative error of 0.005322 for s = 0.001,
and with a maximum error of 0.029735 and the relative
error of 0.007577 for s = 0.002.
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Fig. 9. Estimating k(u) for Example 3 with boundary noise: (a) comparing
exact solution and numerical solutions calculated by one-step GPS and (b)
numerical errors.
Then, we extend the temperature range to a maximum
temperature of 60, that is, we use u0 = 60 to be the left
boundary temperature. Thus, the initial and boundary con-
ditions used in this estimation are

uðx; 0Þ ¼ 60ð1� xÞ; uð0; tÞ ¼ 60; uð1; tÞ ¼ 0. ð45Þ
Even for this case our estimation of the temperature-

dependent thermal conductivity is also good as shown in
Fig. 8, where we have fixed Dx = 1/50 and T = 0.00001 s.
The numerical solution deviating from the exact solution
very small with a maximum error of 0.019076 and a relative
error of 0.00072135.

Finally, the numerical results with a fixed noise
s = 0.001 on the final data and the boundary noises
r = 0.05 and 0.2 were also compared with the exact solu-
tion in Fig. 9(a). The other parameters used are the same
as that used in Fig. 7. It can be seen that the relative error
can be controlled smaller than 2.5% as shown in Fig. 9(b),
even the boundary disturbance is about 6.7% of the exact
value.

5. Conclusions

In this paper we were concerned with the numerical
solution of an inverse problem for estimating the tempera-
ture-dependent thermal conductivity of a one-dimensional
quasilinear heat conduction equation. The key point was
the construction of a future cone and a one-step group-pre-
serving scheme. It is the first time that we could construct a
geometry (future cone), algebra (Lie algebra) and group
(Lie group) description of the inverse problems governed
by differential equations.

By employing the one-step GPS we have derived a
quasilinear algebraic equation to determine the tempera-
ture-dependent thermal conductivity under a given initial
temperature and a measured temperature at time T. Two
numerical examples of the inverse problems were work
out, which show that our estimation method is applicable
even for a large temperature range. Under the noisy mea-
sured final temperature and the boundary measurement
noise the one-step GPS was also robust enough to estimate
the unknown thermal conductivity. This new technique is
accurate and effective, deserving an extension to the estima-
tion of other thermophysical properties in the non-linear
heat conduction problems. Recently, the GPS methods
are employed to solving the backward heat conduction
problem [20] and the sideways heat conduction problem
[21].
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